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LAMINAR BOUNDARY LAYER ON A CONE IN
SUPERSONIC FLOW WITH UNIFORM MASS TRANSFER

Paul A. Libby

SUMMARY

A solution for the laminar boundary layer on a cone with uni-
form mass transfer is obtained. The velocity field is found for either suction
or injection but the related solution for the energy field is subject to an energy
balance at the exposed surface and is therefore valid only for injection. This
latter solution is equally applicable to certain species fields as well. The
present results along with those presented previously for the two-dimensional
case permit a comparison of the effect of injection on boundary layers over

two-dimensional and conical surfaces.

INTRODUC TION

The characteristics of laminar boundary layers involving mass
transfer are of interest in connection with the thermal protection of surfaces
subjected to high-energy gas flows and with boundary layer control. The es-
sential simplification resulting from the assumption of flow similarity has
led to its widespread application to the theoretical treatment of such boundary
layers. Indeed, in certain applied problems, e.g., at stagnation points and
on surfaces involving steady-state sublimation, the similarity assumption is
exactly applicable. Much less attention has been devoted to nonsimilar bound-
ary layers with mass transfer although they arise in problems of practical
interest; e. g., experimental research of a fundamental nature is often carried
out on porous surfaces which lead to uniform rates of suction or injection and
thus to nonsimilar flows. The present report deals with the boundary layer

on a cone in supersonic flow with uniform mass transfer.

"'This report is an extended version of a paper ac-
cepted for publication in the Physics of Fluids. In the abbreviated version
the previous analysis of reference 1 is relied on heavily for notation and de-
tails; the present extended version is more complete and self-contained.



The analysis develops first the velocity field in the boundary
layer on the cone; this will be found to be applicable to suction as well as to
injection. However, the next stage of the analysis pertains to the energy
and species conservation fields associated with this velocity distribution
under steady flow conditions; thus energy and species balance conditions are
applied at the porous surface and the resultant solutions are applicable only

to the case of injection. This is generally the case of greater applied interest.

The present analysis should be considered a generalization to
the case of a cone of previous two-dimensional solutions with uniform mass
transfer. In the context of modern transformations of the equations describ-
ing laminar boundary layers for both two-dimensional and axisymmetric flows,
it may be a priori surprising that these two cases must be treated separately.
However, the requirement of uniform mass transfer leads mathematically to
two distinct cases and the analysis for one cannot be interpreted so as to apply
to the other. Physically, the distinct behavior in the two cases appears to be
related to the different effect of the uniform mass transfer on the boundary

layer growth which in both cases is nonparabolic, a symptom of nonsimilarity.

The problem of the two-dimensional boundary layer with uniform
mass transfer has been considered by several authors; Iglish (reference 2)
presents a solution for incompressible flow with uniform suction. Lew and
Fannucci (reference 3) provide the extension to compressible flows with either
uniform suction or injection. The analyses of both references 2 and 3 deal
primarily with the velocity field and involve the numerical solution of a par-
tial differential equation which is free from parameters and which thus has

been integrated once-for-all.

Libby and Chen (reference 4) recently treated the two-dimensional
case by carrying out an expansion in terms of a mass transfer parameter.
This permits the velocity, energy and species fields, the latter two involving
balance conditions at the porous surface, to be determined from the successive
solution of ordinary differential equations. The velocity field provided by ref-
erence 4 duplicates that obtained previously in references 2 and 3 but its avail-

ability and describing form permit the energy and species fields, which had



previously been largely ignored, to be readily obtained. Of interest in these
solutions is the distribution of wall enthalpy and wall concentration of the
various species present., For example, at the leading edge of the plate the
enthalpy at the porous surface is equal to the stagnation enthalpy of the ex-
ternal flow; downstream from the leading edge the wall enthalpy approaches
that in the coolant chamber. Similar considerations apply to the composition
at the porous surface. Such streamwise behavior is, of course, symptomatic
of nonsimilar flows. No generalization of the aforementioned two-dimensional
analyses to the axisymmetric case appears to have been performed. However,
Libby (reference 4) in connection with an analysis of mass transfer effects
treated as perturbations recently performed a calculation related to that pre-
sented here but involving only the first-order effect of injection. The prin-
cipal motivation and utility of the analysis of reference 4 are the possibility

of computing the effects of arbitrarily distributed mass transfer.

It is perhaps of interest to note that none of the aforementioned
analyses are able to answer the question of whether a constant, finite injection
rate, (pv)w, applied over a finite streamwise length, x, leads to "blow-off, "
i.e., to a point of zero skin-friction. The earlier studies of boundary layers
with mass transfer based on momentum integral methods indicated a negative
answer to this question but Stewartson (reference 5) has recently called at-
tention to some unpublished results which imply an affirmative answer:.::
Studies of the behavior of boundary layers in the neighborhood and downstream

of the ""blow-off'" point are of considerable interest but are outside the scope

of the present paper.

The present analysis follows closely that of reference 1 and
provides its extension to the axisymmetric case; the solution for the velocity
field is presented first and then applied to the determination of the energy

and species fields.

“In terms of the mass transfer parameter of reference 1, namely

€ = F-(Pv)w/peueue](s/Z)l/Z, "blow-off'" occurs at € = -0. 606.



SYMBOLS

local skin-friction coefficient -

c

ff transformed stream function, cf. equation (2)

Gn unit solutions for the energy and species fields, cf. equation (20)
g ratio of stagnation enthalpies, hs/hs,

h static enthalpy

h_ stagnation enthalpy, (uZ/Z) +h

N unit solutions for the velocity field, cf. equation (11)
Ril), Rgz) inhomogeneous terms, cf. equations (12) and (21)

r cylindrical coordinate

s transformed streamwise coordinate, cf. equation (1)
u streamwise velocity component

v normal velocity component

X streamwise coordinate along the surface

Yi mass fraction of species i

y coordinate normal to the surface

o cone parameter, o = s'in GC

€ mass transfer parameter for two-dimensional case
n transformed normal coordinate, cf. equation (1)

GC cone half-angle

L viscosity coefficient

p mass density

X transformed streamwise coordinate, cf. equation (8).

Subscripts

c refers to conditions in the coolant chamber

e refers to conditions in the external stream

w refers to conditions at the surface, y <5 =0

s, e refers to stagnation conditions in the external stream.

THE VELOCITY FIELD

The geometrical and dynamical variables being considered are

shown schematically in figure 1. The velocity distribution throughout the



boundary layer may be obtained in terms of transformed variables from the
X-wise fnoméntum and fhe mass co__hservation equatibns ‘a_lon'e pr’ox?ided there
is employed the common assumption that the ratio 'pp/peu.e';‘ 1. T}_;e trans-
formed variables are the we_ll-kriown Levy-Lees m,s (cf, e.g., references

5 and 6) defined for the prese.nt problem a.écording' to

_ T . .
m=pux 2o [ i) ay
(1)
rY
s = p KU, ‘jo r? dx = Pkou, aZ (x3/3)

where r = x sin Gc = ax. The velocity components are found from the trans-

formed stream function f(s,7) by means of the equations

(2)

1/2

v = - [(2s) /pr]lpe#e}ler_z [(f/;s) * fs] Ty f‘n}

A useful result from the second of equations (2) relates the distributions of

f(s,0) = fw(s) and of (pv)w, i.e.,

(pv)
1T (3)

e e €

4 eal/2

Finally, the partial differential equation for f(s,m) is (cf., e.g., reference 6)

f +ff -2s (f_f -f £ =0 . 4

nmm nn ( n sn 5 7777) (4)

Consider next the conditions to which the solution of equation (4)
is to be subject; if it is assumed that s fs -0 forall ;§ as s — 0 and that
£(0,0) = fw(O) = 0 as will be shown to be the case below, indeed fw = '51/6,
then

£,(0,m) = £,(n) (5)



where fo is the Blasius function and where the prime denotes differentiation
with respect to 7. This behavior near the origin of the boundary layer should
be contrasted with that which prevails for flows with fw(O) £ 0; this is the

case for the boundary layer on a cone in supersonic flow if (pv)w o« s-l/'Z

at least as s - 0. Then the effect of mass transfer prevails even at s =0,
In the present case the uniform mass transfer must persist over some dis-

tance from the origin before it influences the boundary layer.

The conditions on fn(s, m) far from and at the porous surface

are the usual
fn(s,oo) =1, fn(s,O) =0 . (6)

The final condition introduces the effect of mass transfer; from equation (3)
it is found that for uniform mass transfer, i.e., (pv)W = constant,
_ _ 1/2  -2/3,,2/3, 1/2,3/2 1/6
f(s,0) = £_(s) = {[-(pv),/p u ] (p u,) Ko (37" /e T27" ) }s
(7)
1/6

Thus fw(s) =g as contrasted to the two-dimensional case in which
fw(s) o sl/2 and to the case of similar flow in which fw(s) = constant. For
a given uniform, injection rate, given cone angle and given properties of the

external flow the factor within { } in equation (7) is known.

It is convenient to introduce a new, nondimensional, independent

variable, X, such that the solution for f is considered as f(x,m) where

x={ }s/® . (8)

Note that X < 0 for injection and X > 0 for suction. Note further that ¥
corresponds to €(s) used in reference 1 for the two-dimensional case; this
correspondence will be of interest in some considerations below of the relative

effect of mass transfer on the boundary layer on wedges and cones.

Equations (4) through (7) then yield the following mathematical

problem:



FEE (/3 f -f £ )=0
m - O3 G e - i i)

f"mﬂ
(9)

fn(O,n) = 15(n) ; fn(x,oo) =1; fn(x.O) =0; f(x,0) =x

The quantity of most technological interest from the solution
for the velocity field is the skin-friction coefficient; in terms of f(x,n) this
is

cr = 612 o ugx/u) M2 g ix,0) (10)

so that the distribution of wall values of f"nn is of interest. Note, of course,

that in equation (10} X = x(x).

The solution of equations (9) can be carried out by finite dif-
ference procedures for both positive and negative values of X starting at
X = 0. Such a solution would correspond to the extension to the cone case
of the two-dimensional calculations of Iglish (reference 2) for X >0 and
of Lew and Fannucci (reference 3) for X § 0. A less ambitious computing
task is involved if a series solution analogous to that of reference 1 is found;
such a solution appears to be adequate for many applied problems. Thus

assume

Qo

fxm = fglm + ) XU N_(n) . (11)

n=1

Substitution into equation (9) and collection of like-powers in ¥ leads to the

infinite array of equations

" "o 1 ' " - =
Nn +f0 Nn (n/3) fO Nn+|_1 + (n/3)] fO Nn o , n=1
(12)
= R(l) , nz2
n
where the Rfll) are nonlinear, inhomogeneous terms depending on Nk('n),
k=1,2, ..., n -1, For example,



(1) - t 2 - "
R, = (1/3) t(Nl) N, Ny J

(13)
(1) _ N N "o "
R3 —Nl NZ-(1/3)N1 NZ (2/3).NZ N1
The solutions of equations (12) are subject to the boundary conditions
1 —_ 1 -
Nn(O) = Nn(oo) =0
Nn(o) =1, n=1 (14)

=0 , n=2

The first five functions Nn(n) have been found numerically.
The crucial values for generating these functions in detail are N'r'l(O); ac-
cordingly, these have been listed in Table I. In addition the '"'velocity pro-
files'" are usually of most graphic interest so these have been given in fig-
ure 2. Also of interest is the variation of (f‘r]'n)w with ¥; this is shown in
figure 3 for four and five terms in the series. From a practical viewpoint
the availability of only five terms would appear from figure 3 to be unimpor-

tant provided |x| < 0.6.

The availability of this solution for the velocity field in the axi-
symmetric case along with the previously available solutions for the two-
dimensional case permits a comparison of the relative effects of mass trans-
fer on cones and wedges be carried out. For this purpose it is of in-
terest to compare ((s) and x(x); thus consider a wedge and a cone
under flow conditions $o that P K, u, are the same in the two
cases and let (pv)w/peue be common. Then at equal distances from the
leading edge and from the apex; -i.e., at the same station x, it can be shown

that

1/2

€ =(2/3 ) x . (15)

Moreover, the ratio of the skin-friction coefficients at the same x-station

becomes



(cg)s p ) fnn(s,O)

(c.) 172
f 3 fnn(X:O)

|
(16)

cone

where it is to be understood that the s and x in the arguments of f_rm are
related according to equation (15) in order to assure comparison at the same
x-station. Note that if f_'m(s, 0) = fnn(x,o), then equation (16) is simply the
well-known relation between the skin-friction on a cone and wedge without
mass transfer. If fnn(s, 0) = f_nn(x,O) with mass transfer, then on the basis
of the comparison as carried out here, mass transfer is considered equally

effective in both geometries.

In figure 4 the ratio of the two skin-friction coefficients is given
for a range of x. The wide excursion of this ratio from the zero mass transfer
value of 0. 578 will be noted. From this figure it will be seen that the effect
of mass transfer in altering the skin friction is greater on wedges than on
cones when the comparison is carried out on the basis described above.

Note, of course, that the total mass added through the porous surface from
the apex of the cone to the generic station x per unit length of pcrimeter at
x is one-half that added from the leading edge of the wedge over the same x-

wise length per unit length parallel to the leading edge.
THE ENERGY FIELD

The energy field will be described in terms of the ratio of stag-
nation enthalpies, g = hs/hs, o In addition to the previously employed as-
sumption, p#/pey.e >~ 1, it will be assumed here,as is frequently done, that
the Prandtl number is unity, that a single diffusion coefficient exists and that
the Schmidt number based thereon is unity. Then the energy equation in ¥, 1

variables is (cf., e.g., reference 6)

g +fgn-(x/3)(f g, -f g)=0 (17)

m noxX X

where it is assumed that f(x,n) is known from the above analysis. The solu-
tions to equation (17) apply to a variety of physical cases depending on the ini-
tial and boundary conditions at the porous surface. Here there will be con-

sidered only the case of injection (x < 0); moreover, it will be assumed that



the convective heat transfer from the gas to the porous surface is absorbed
by the injected gas in passing from an injection chamber, where its enthalpy
ratio is constant and denoted by 8 to the exposed surface where its en-
thalpy ratio is variable and denoted by By = gw(x), to be determined. Thus
under steady flow conditions the convective heat transfer is found to be re-
lated to the enthalpy difference (gW - gc) according to*

(g.)

nw " (4/3)(-xMg, - 8.) - (18)

(o

Note that both the case of a coolant being injected to provide thermal insula-
tion, i.e., 8¢ < 1, and the case of a heated gas being injected to heat the
surface and the boundary layer, i.e., 8.~ 1, may be treated by the present
analysis; perhaps the former case is of greater current interest. It is perhaps
worth noting that if in addition to the convective heat load there exists a uni-
form additional thermal load, e.g., due to radiation, then this heat balance
condition still prevails but with a redefined g which accounts for this added

load.

From equation (18) and quite separately on physical grounds
it is expected that at the origin (x = 0), gw(O) = 1 so that the initial and ex-

ternal stream conditions are

g(x,oo) =g(0,m) =1 . (19)

The solution of the problem posed by equations (17) through (19)
again may be found by finite difference calculations; here a series solution

is found in the form

X" G, (n) (20)
1

gixsm =1 +(g_ - 1)

A 18

where the Gn(n) functions are given by an array of ordinary differential

equations

“Reference 1 provides a detailed derivation of the energy and species
balance conditions; little change is necessary to obtain the conditions for the
cone case.

10



n ' 1 = =

Gn + fOGn - {n/3) fOGn o , n=1
(21)
- r®) ns 2
n
and are subject to the conditions
4 —_

Gn(O) = -(4/3) Gn_l(O) ) nz2
= (4/3) > n =1

Again the Rl(f) functions are known, nonlinear functions of the previous

Nn and Gl_1 functions; for example

(2) _ ' '
R;™ = - (4/3) N G} - (1/3) N} G,
(22)
(2) — 1 4 ' t
RY™ = - (4/3) Ny G} +(2/3) N} G, +(1/3) N}, G - (5/3) N, G| .

The first five Gn solutions have been obtained numerically;
their reproduction by straightforward numerical integration requires the
values of Gn(O) ~and Gl‘q(O) listed in Table I1I. For graphic displace the
distributions of Gn(n) are shown in figure 5 while the distribution of wall
enthalpy in the form (1 - gw)(l - gc)—1 as given by four and five terms in

the series is shown in figure 6.

The quantity which is of greatest applied interest from the energy
solution obtained here is the distribution of wall enthalpy in terms of gw(x)
obtainable from figure 6. Note that increasing |X| corresponds to increas-
ing x and thatas x increases Ew changes from unity to g in the manner

shown in figure 6. Again such behavior is symptomatic of nonsimilar flows.

If there is considered the comparative efficacy of injection on
wedges and cones in making 8w approach g, then on the same basis as
used above for the comparison of skin friction, it is found that injection is

more effective on wedges than on cones.

In closing this section several remarks are perhaps in order.

The solutions for both the velocity and energy fields have been obtained in

11



terms of the transformed variables X and 7); the relation between the phys-
ical, streamwise coordinate x and X is simply given in terms of the in-
jection rate and of the external flow and cone characteristics. The trans-
formation inverse to that of equation (1) yields y = y(x,n) in terms of an
integral with respect to 7 of the density ratio pe/p and requires explicit
determination of that density ratio. This in turn requires simultaneous con-
sideration of the velocity, energy, and species fields and involves an equation
of state, and relations between static temperature and static enthalpy of each
species present. Calculations of this sort are straightforward and are of in-
terest in connection with comparisons between experiment and analysis.

Note that the applicability of the present solution for the energy field to a

species field is discussed below.
CONCLUDING REMARKS

In reference 1 it is shown that the solutions for species and
energy conservation in the two-dimensional case are identical provided no
chemical reaction takes place, and provided a species mass balance across
the porous surface is asserted. The same considerations apply to the cone
case as well. The mathematical formulation for the species field involves
replacing g in equation (17) by the species mass fraction, Yi’ replacing
g8, 8. and (gn)W in the energy balance of equation (18) by Y. w’ Yi,e and

i,
[(Y.). ], respectively, and replacing equation (19) by Yi(x,oo) Yi(O,'n) =

1 n W
Y, .- Then the solution for Y, is sought in the form

’

@
_ N n
Yi(x’n) - Yi, e * (Yi, c Yi, e) L X Gn(n)

n=1
as in equation (20). Thus the solutions for Gn('r)) may be applied in deter-

mining the species fields as well.

It is also noted in reference 1 and repeated here for complete-
ness that the analysis of species conservation is applicable to boundary layers
with chemical reaction provided the species conservation is replaced by ele-

ment conservation; in this case the species and temperature fields must be

12



found from the solutions for element and energy conservation obtained here

and from additional assumptions regarding the chemical behavior of the sys-
tem, i.e., whether it corresponds to equilibrium chemistry or to finite rate
behavior, and regarding the relations between static temperature and species

enthalpy.
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Table I. Initial values of the Nn(‘n) functions.

n N'(0)

0.9039

0.2504
-0.1068

0.04038
-0.07963

b NV e

Table II. Initial values of the Gn(‘n) functions.

n G;l(O) Gn(O)
1 1.333 -2.465
2 3.287 -1.645
3 2.193 -0.2046
4 0.2728 -0.1205
5 0.1607 -0.1214
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Figure 1. Schematic representation of the flow.
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Figure 3. The effect of mass transfer on the skin-friction parameter.
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Figure 4. The relative effect of mass transfer on skin friction.
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Figure 5.

The functions Gn(n).
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Figure 6. The variation of wall enthalpy with the injection parameter.
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